Matrices

Definition: An $m \times n$ matrix is an
arrangement of mn objects (not necessarily distinct) in m rows and n columns in the form

We say that the matrix is of order $m \times n$ (m by n). The objects $a_{11}, a_{12}, \ldots, a_{m n}$, are called the elements of the matrix.
Each element of the matrix can be a real or a complex number or a function of one more variables or any other object. The element a; which is common to the i th row and the j th column is called its general element. The matrices are usually denoted by boldface uppercase letters, C, \ldots etc. When the order of

$$
A=\left[a_{i,}\right]
$$ the matrix is understood, we can simply write $A=\left[a_{i j}\right]$. If all elements of a matrix are real, it is called a real matrix, whereas if one or more elements of a are complex it is called a complex matrix.

Types of Matrices

1. Row Vector: A matrix of order $1 \times n$ that is, it has one row and n column is called row matrix or row vector. And it can be written as $\left[a_{11}, a_{12}, \ldots, a_{1 n}\right]$ in which $a_{1 j}$ is the j th element.

Q. What is the order of row vector?
2. Column vector: A matrix of order $m \times 1$, that is, it has m row and one column is called column vector or column matrix of or order mend is written as $\left[{ }_{a_{m}}\right]$
$5^{2} \Rightarrow$

Q. What is the order of column vector?
3. Rectangular matrix: A matrix A of order $m \times n$, $m \neq \hat{n}$ is called a rectangular matrix.

4. Square matrices: A matrix A of order $m \times n$ in which $m=n$, that is number of rows is equal to the number of columns is called a square matrix $\left.\begin{array}{ccc}\text { of order } n . \\ 2 & 1 \\ 0 & 1\end{array}\right]_{2 \times 2}\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] \quad[5]_{1 \times 1}[$
diagonal elements

$$
\underline{\underline{a_{i j}}} \quad i=j
$$

. principal diagonal
principal diagonal
. off-diagonal elements. $a_{i j} \quad i \neq j$

6. Trace of the matrix.

$$
A=\left[\begin{array}{ccc}
i & 2 & 3 \\
1 & -1 & 4 \\
6 & 7 & 2
\end{array}\right] \begin{array}{lll}
\operatorname{tra}(A)=5+8 & (a) & 0 \\
(b) & (c) 2 \\
(b) & (d) 3
\end{array}
$$

1. Null matrix: A matrix A of order $m \times n$ in which all the elements are zero is called a null matrix

$$
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]_{\mid<2}
$$

$$
=\left[\begin{array}{lll}
2 \times 2
\end{array}\right.
$$

=hor a zero matrix and is denoted by 0
$\mathrm{A}_{2}+2$
(A) $=[0]_{2 \times 2}$

Q. What is order of the null matrix
6. Diagonal Matrix: A square matrix A in which all the off-diagonal elements $a_{i j} i \neq j$ are zero is called a diagonal matrix. For example

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
\text { diagonal matrix. For example } \\
0 & 2
\end{array}\right] \quad A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right) \\
& \operatorname{dig}(1,2) \\
& \operatorname{dig}(1,1,1) \quad \operatorname{dig}(1,2,3)
\end{aligned}
$$

7. Unit Matrix $\left.\quad \begin{array}{l}A\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
A B=B
$$

1. Equal matrix $\cap \quad A=\left[a_{i j}\right] \quad B=\left[b_{1 j}\right]$
2. Equal matrix

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
x+2 & 2 \\
3 & y
\end{array}\right] \cdot \begin{aligned}
& x+2=1 \\
& 1 x=1
\end{aligned}
$$

2. Sub Matrix

$$
\left[\begin{array}{cc}
1 & 3 \\
y & 3 \\
\cline { 1 - 1 } & 0
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
& \begin{array}{ll}
a_{11}=1 \\
4 & 2 \\
7 & 5
\end{array}\left(\begin{array}{l}
3 \\
6
\end{array}\right]
\end{array}\left[\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right]\right.
$$

$$
\left[\begin{array}{l}
45 \\
78
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
-1 & 2 \\
4 & 6
\end{array}\right] \begin{gathered}
\text { Y os } \\
\mathrm{No}
\end{gathered}
$$

1. Scalar Matrix

$$
A=\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]_{2 \alpha_{2}}=[5]_{2 \times 2}-\quad B=\left[\begin{array}{lll}
6 & & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{array}\right]
$$

Example 1. Find the values of x, y, z and 'a 'which satisfy the matrix equation.

$$
\left[\begin{array}{cc}
x+3 & 2 y+x \\
z-1 & 4 a-6
\end{array}\right]=\left[\begin{array}{cc}
0 & -7 \\
3 & 2 a
\end{array}\right] 2 x \quad 2
$$

a. $-3,-2,4, \overline{-}$

$$
\left.\begin{aligned}
& x+3=0 / 2-1=3 \\
& x=-3
\end{aligned} \right\rvert\, \begin{aligned}
& 4 a-6=2 a \\
& 2 a=-4
\end{aligned}
$$

b. $6 .-2,-3,4,3$

$$
\begin{gathered}
2 a= \\
a=3
\end{gathered}
$$

$2 y+x=-7$

Matrix Algebra

(i) Multiplication of a matrix by a scalar,

If a matrix is multiplied by a scalar quantity k, then each element is multiplied by k, ie.

$$
A=\left[\overline{a_{i j}}\right]
$$

$$
\begin{aligned}
& A=3=\text { ? } \\
& A=\left[a_{i j}\right] \quad B=\left[b_{i j}\right] \\
& \overline{m \times n} \quad m \times n \\
& \cdots-b_{11}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ᄂ J' } A=\left[\overline{a_{i j}}\right] \\
& \text { 代A=a } k b^{k} k b \\
& \text { KC Kt } \\
& k . A=\left[k a_{i j}\right]
\end{aligned}
$$

$$
A=\left[15=\left[\begin{array}{l}
a_{1} \\
A
\end{array} m_{m a n}=\left[b_{i j}\right]_{m \times n}\right.\right.
$$

(iii) Ad Addition/ subtraction of two matrices.

$$
\begin{aligned}
A & =\left[\begin{array}{rrr}
4 & 2 & 5 \\
1 & 3 & -6
\end{array}\right], B=\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & 1 & 4
\end{array}\right] \\
A+B & =\left[\begin{array}{llr}
4+1 & 2+0 & 5+2 \\
1+3 & 3+1 & -6+4
\end{array}\right]=\left[\begin{array}{rrr}
5 & 2 & 7 \\
4 & 4 & -2
\end{array}\right]
\end{aligned}
$$

Note: Only matrices of the same order can be added or subtracted.
(i) Commutative Law: $A+B=B+A$.
(ii) Associative law: $\widehat{A}+(B \uparrow+C)=(A+B)+C$.

a. 2,4,1,3
b. $2,1,3,4$
c. $4,2,3,4$
d. 1,3,2,4
(iii) Multiplication of two matrices. $\left[\begin{array}{cc}3 \times 3 & -2 \\ 3 & -4+0-4 \\ 2\end{array}\right]$ $A=\left[\begin{array}{lll}-1 & 1 & 2 \\ 1 & - & 3\end{array}\right] \quad A B \quad B \quad\left[\begin{array}{ll}3 & -2 \\ 5 & -5 \\ 7 & -8\end{array}\right]$ $A=\left[\begin{array}{lll}1 & 4 & 3 \\ 2 & 3 & 4\end{array}\right]$ $B=\left[\begin{array}{rr}1 & -2 \\ -1 & 0 \\ 2 & -1\end{array}\right] \quad 3 \times 2$

$$
\left[\begin{array}{cc}
0-1+4 & 0+0-2 \\
1-2+6 & -2+0-3 \\
2-3+8 & -4+0-4
\end{array}\right.
$$

$$
A B=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
2 & 3 & 4
\end{array}\right] \begin{aligned}
& R_{1} \\
& R_{2}
\end{aligned} \times\left[\begin{array}{rr}
R_{3} & C_{2} \\
R_{3} & -2 \\
-1 & 0 \\
2 & -1
\end{array}\right]=\left[\begin{array}{lll}
R_{1} & C_{1} & R_{1} C_{2} \\
R_{2} & C_{1} & R_{2} C_{2} \\
R_{3} C_{1} & R_{3} C_{2}
\end{array}\right]
$$

PROPERTIES OF MATRIX MULTIPLICATION

1. Multiplication of matrices is not commutative: $A B \neq B A$
2. Matrix multiplication is associative, if conformability is assured. $A(B C)=(A B) C$
3. Matrix multiplication is distributive with respect to addition. $A(B+C)=A B+A C$
4. Multiplication of matrix A by unit matrix. $A I=I A=A$
5. Multiplicative inverse of a matrix exists if $|A| \neq 0$.
$A \cdot A^{1}=A^{-1} . A \equiv L 01$
6. If A is a square then $A \times A=A^{2}, A \times A \times A=A^{3}$.
7. $A^{0} \xlongequal{ }$
8. $I^{n}=I$, where n is positive integer.

Transpose of the matrix:
If in a given matrix A, we interchange the rows and the ${ }^{\top}$ corresponding columns, the newimatrix obtainedtis called the transpose of the matrix A a nd $\left[\begin{array}{lll}3 & 0 & 7 \\ 4 & 5 & 8\end{array}\right]$ is denoted by A^{\prime} or A^{T}

$$
A=\left[\begin{array}{lll}
2 & 3 & 4 \\
1 & 0 & 5 \\
6 & 7 & 8
\end{array}\right]
$$

Then A^{\prime} or $A^{T}=$?

 if for all values of i and $\underline{a}_{i j}=\bar{a}_{j i}$ ie., $A \stackrel{a}{\Rightarrow} A^{T i 32} a_{33}$

$$
\begin{gathered}
\left.a_{32}=a_{23}\right] \\
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]^{\top}=\left[\begin{array}{c}
2 \\
4
\end{array}\right.}
\end{gathered}
$$

$$
\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right]
$$

Skew symmetric matrix: A square matrix is called skew symmetric matrix, if
(1) $a_{i j}=-a_{j i}$ for all values of i and j, or $A^{T}=-A$
(2) All diagonal elements are zero,

$$
\left[\begin{array}{ccc}
0 & -h & -g \\
h & 0 & -f \\
g & f & 0
\end{array}\right]
$$

Triangular matrix: (Echelon form) A square matrix, all of whose elements below the leading diagonal are zero, is called an upper triangular matrix. A square matrix, all of whose elements above the leading diagonal are zero, is called a lower triangular matrix egg.,

Orthogonal Matrix: A square matrix A is called an orthogonal matrix if the product of the matrix A and the transpose matrix A^{\prime} is an identity matrix e.g. $A . A^{T}=I$

EX... ????
Ex
$A=\left[\begin{array}{ll}1 & 0\end{array}\right.$

Note: if $|A|=1$, matrix A is proper.

Conjugate matrix:

$$
A=\left[\begin{array}{ccc}
1+i & 2-3 i & 4 \\
7+2 i & -i & 3-2 i
\end{array}\right]
$$

$$
\bar{A}=\left[\begin{array}{ccc}
1-i & 2+3 i & 4 \\
7-2 i & i & 3+2 i
\end{array}\right]^{\bar{c}}=\begin{aligned}
& c+i b \\
&
\end{aligned}
$$

Hermitian Matrix:
A square matrix $A=\left(a_{i j}\right)$ is called Hermitian matrix, if every i-jth element of A is equal to conjugate complex j-it element of A. That means

$$
\begin{array}{ll}
\text { A. That means } & A=(\bar{A})^{\top} \\
a_{i j}=\bar{a}_{j i} & A=\left(\begin{array}{l}
\text { a }
\end{array}\right)
\end{array}
$$

Ex...???

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 & i \\
-i & 0
\end{array}\right]=\widetilde{(\bar{A})^{\top}=\left[\begin{array}{rr}
1 & -i \\
i & 0
\end{array}\right]^{\top}=\left[\begin{array}{rr}
1 & i \\
-i & 0
\end{array}\right]} .
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \bar{A}=\left[\begin{array}{rr}
-i & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$$
1)
$$

$$
\left[\begin{array}{lll}
T & 2+3 i & 3+i \\
2-3 i- & 1-2 i \\
3-i & 1+2 i & 5
\end{array}\right]
$$

$$
\begin{gathered}
\bar{A}=\left[\begin{array}{cc}
-i & 0 \\
0 & 1
\end{array}\right] \\
(\bar{A})^{\top}=\left[\begin{array}{cc}
-i & 0 \\
0 & 1
\end{array}\right] \\
A=\left[\begin{array}{ccc}
1 & 2+i & 3 i \\
2-i & 5 & 2+2 i \\
-3 i & 2-2 i & 6
\end{array}\right]^{2}
\end{gathered}
$$

Skew-Hermitian Matrix:
A square matrix $A=\left(a_{i j}\right)$ will be called a Skew Hermitian matrix if every i-jth element of A is equal to negative conjugate complex of j-it element of A. That means $a_{i j}=-\bar{a}_{j i} \quad-A=\dagger(\bar{A})$

Note: All the diagonatents of a Skew Hermitian Matrix are either zeros or pure imaginary

$$
-(a+i b)=\left(\frac{-11}{a+i b}\right)
$$

$$
-a-i b=a-i b
$$

$$
\begin{array}{ll}
-A= & (\bar{A})^{+} \quad \text { Steb-1 } \\
-\left[a_{i j}\right]=\left[\overline{a_{i j}}\right]^{I} \\
-\left[a_{i j}\right]=\left[\overline{a_{j i}}\right] & a_{i i}=a+i b \\
-a_{i i}=\overline{a_{i i}} & a_{i i}=a+i b \\
-(a+i b)=(a+i b) & =i b \\
-2 a-i b+i b=u & =a-i b
\end{array}
$$

$$
a=0
$$

$$
A^{\diamond}=(\bar{A})^{\top}=A^{\sigma}
$$

Matrix A^{θ} : Transpose of the conjugate of a matrix A is denoted by A^{0}.

Note: Necessary and sufficient condition for a matrix A to be Hermitian is that $A=A^{\theta}$ ie. conjugate transpose of A

$$
\Rightarrow \quad A=(\bar{A})^{T}
$$

Unitary Matrix: A square matrix \bar{A} is said to be $\overline{\text { unitary }}$ if $A^{\theta} A=\bar{I}$

$$
A \cdot A \triangleq I
$$

$$
\frac{W^{\prime}}{A}=\left[\begin{array}{cc}
\frac{1+i}{2} & \frac{-1+i}{2} \\
\frac{1+i}{2} & \frac{1-i}{2}
\end{array} \frac{1}{2}\left[\begin{array}{cc}
1-i & 1-i \\
-1-i & 1+i
\end{array}\right]=\frac{1}{4}\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right.
$$

$$
\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
1 & 1+i \\
1 i & -1 \\
A^{\theta} & \frac{1}{\sqrt{3}}\left[\begin{array}{cc}
1 & 1+i \\
1-i & -1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
3 \\
3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad A^{\theta} \cdot A=A \cdot A^{0}=I
\end{array}\right.
$$

$\left.\frac{1}{\sqrt{3}}\right|^{1} \mathrm{i}^{111}-1 \left\lvert\, \frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]^{1}=\frac{1}{3}\lfloor 3 J=\operatorname{Lo} 1\right.$
Idempotent Matrix: A matrix, such that $A^{2}=A$ is called Idempotent Matrix.

$$
A^{2}=A
$$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
A=\left[\begin{array}{rrr}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right]\left[\begin{array}{ccc}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right]=[\quad]
$$

Periodic Matrix: A matrix A will be called a Periodic Matrix, if $A^{k+1}=_A$ where k is $\mathrm{a}+\mathrm{ve}$ integer. If k is the least + ve integer, for which $A^{k+1}=A$, then k is said to be the period of A. If we choose $\mathrm{k}=1$, we get $A^{2}=A$ and we
$1+6-12$ call $\frac{i t}{2}$ to be idempotent matrix. For ex $>\quad<=(a)$ i

$$
\left(\begin{array}{ccc}
\frac{1}{1} & -2 & -6 \\
-3 & 2 & 9 \\
2 & 0 & -3
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & -6 \\
-3 & 2 & 9 \\
2 & 0 & -3
\end{array}\right)=\left[\begin{array}{lll}
-5 & -6 & -6 \\
-5+18-12
\end{array}\right]=\left[\begin{array}{lll}
1 & -2 & -6 \\
& (c) 3
\end{array}\right.
$$

Nilpotent Matrix: A matrix will be called a Nilpotent matrix, if $A^{k}=0$ (null matrix) where k is a +ie integer: if however k is the least ty e integer for which $A^{k}=0$, then k is the -

$$
\begin{aligned}
& \text { of the nilpotent matrix. } \\
& =\left[\begin{array}{cc}
\overrightarrow{a b} & b^{2} \\
-a^{2} & -a b
\end{array}\right],\left[\begin{array}{cc}
a^{2} b^{2}-a^{2} b^{2} & a b^{3}-a b^{3} \\
-a^{2} & -a b
\end{array}\right]=\left[\begin{array}{ccc}
0 & \text { in dea } \\
-a^{3} b+a^{3} b & -a^{2} b^{2}+a^{2} b
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& A=\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{ll}
2 & -1 \\
4 & -2
\end{array}\right]
$$

Involuntary Matrix: A matrix A will be called an
Involuntary matrix, if $A^{2}=I$ (unit matrix). Since $I^{2}=I$ always

So we can say: Unit matrix is involuntary. $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$
$\left(\begin{array}{cc}1 & 0 \\ 0 & -1 \\ i & 0\end{array}\right)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$A=\left[\begin{array}{ll}4 & -1 \\ 15 & -4\end{array}\right]\left[\begin{array}{ll}4 & -1 \\ 15 & -4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$A=\left[\begin{array}{ccc}3 & -4 & 4 \\ 0 & -1 & 0 \\ -2 & 2 & -3\end{array}\right] 3 \times 3$

Singular Matrix: If the determinant of the matrix is zero, then the matrix is known as singular matrix

$$
\begin{aligned}
& |A| \text { ar } \operatorname{det}(A)=0 \text { Single } \\
& |A| \neq 0 \quad \text { Non Sin n }
\end{aligned}
$$

Determinant

Determinant of second order

$$
\begin{aligned}
& \rightarrow\left|\begin{array}{ll}
a_{1} \\
a_{1} & b_{1} \\
a_{2} & \frac{b_{2}}{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1} \quad \text { or }\left(\left.\begin{array}{ll}
a_{1} & b_{1} \\
K \leq \\
a_{2} & b_{2}
\end{array} \right\rvert\,=a_{1} b_{2}-a_{2} b_{1}\right. \\
& \left|\begin{array}{ll}
4 & 6 \\
2 & 5
\end{array}\right|=2 u-12=8 \quad\left|\begin{array}{ll}
8 & 5 \\
3 & 1
\end{array}\right|=8-15=-7 \\
& \begin{array}{|ll|}
\cos \theta & -\sin \theta \\
\hline \sin \theta & \cos \theta
\end{array} \\
& \left|\begin{array}{rr}
-3 & 7 \\
2 & 4
\end{array}\right|=-12-14=-26 \quad\left|\begin{array}{rr}
5 & -2 \\
4 & 3
\end{array}\right|=15^{-}+8=23 \\
& =1
\end{aligned}
$$

MINOR: The minor of an element is defined as a determinant obtained by deleting the row and column containing the element.
For ex.
$\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|-$

$$
\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|=b_{2} c_{3}-b_{3} c_{2}
$$

Thus the minors a_{1}, b_{1} and c_{1} are respectively.
$\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right|, \quad\left|\begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}\right| \quad$ and $\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right|$

So the determinant can be found as follows

COFACTOR:

$$
\text { Cofactor }=(-1) \underline{\underline{r+c} *} \text { Minor }
$$

where r is the number of rows of the element and c is the number of columns of the element. The cofactor of any element of jth row and lith column is $(-1)^{i+j} *$ minor

Ex. Find the Minors and cofactors of first row

$$
\begin{aligned}
& C_{0} f_{0}(2)=(-1)^{1+1} \cdot 7=7 \\
& \min (3)=\left|\begin{array}{ll}
4 & 0 \\
6 & 7
\end{array}\right|=28 \\
& C_{0} \rho(3)=(-1)^{1+2} .28=-28
\end{aligned}
$$

$$
d x(A)=2(7)-3(28)+5(8-5)(A)
$$

Ex. Find the determinant of

$$
\left.\begin{aligned}
& 0 \\
& -\left|\begin{array}{ccc}
0 & 2 & 0 \\
0 & 1 & 3 \\
2 & 1 & 0
\end{array}\right|-1\left|\begin{array}{ccc}
1 & 2 & 0 \\
2 & 1 & 3 \\
1 & 1 & 0
\end{array}\right|+2\left|\begin{array}{ccccc}
1 & 1 & 2 & 1 & 0 \\
1 & 0 & 0 \\
2 & 0 & 3 \\
1 & 2 & 0
\end{array}\right|-3\left|\begin{array}{ccc}
1 & 0 & 2 \\
2 & 0 & 1 \\
1 & 1 & 2
\end{array}\right| \\
& 0-1(-3(1-2))+2(1(-6))
\end{aligned} \right\rvert\,-3(1(-2)+2(4))=-
$$

PROPERTIES OF DETERMINANTS

1. The value of a determinant remains unaltered, if the rows are interchanged into columns

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=a_{11} a_{22}-a_{21} \cdot a_{12}} \\
& ,\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right]=a_{11} a_{22}-a_{12} a_{21}
\end{aligned}
$$

$$
\left[\begin{array}{cc}
a_{11} & a_{21} \\
a_{13} & a_{22}
\end{array}\right]=a_{11} a_{22}-a_{12} a_{21}
$$

2. If two rows (or two columns) of a determinant are interchanged, the sign of the value of the determinant changes.

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]} & {\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{11} & a_{12}
\end{array}\right]} \\
a_{11} a_{22}-a_{21} a_{12} & =a_{21} a_{12}-a_{11} a_{12} \\
& -\left(a_{11} a_{22}-a_{21} a_{12}\right)
\end{array}
$$

3. If two rows (or columns) of a determinant are identical, the value of the determinant is zero.

$$
\left|\begin{array}{ll}
a & a \\
b & b
\end{array}\right|=0 \quad\left|\begin{array}{ll}
a & k a \\
b & k b
\end{array}\right| \geq k b a-k b a=0
$$

4. If the elements of any row (or column) of a determinant be each multiplied by the same number, the determinant is multiplied by that number.

$$
\begin{aligned}
& \left\lvert\, \begin{array}{|cc}
\mid a^{2} b \\
c & d
\end{array}=a d-b c\right. \\
& \frac{k a}{k b} d \\
& \frac{k}{c}=\frac{k a d-k b c}{\bar{k}(a d-b c)}
\end{aligned}
$$

5. The value of the determinant remains unaltered if to the elements of one row (or column) be added any constant multiple of the corresponding elements of any other row (or column) respectively.

$$
\begin{aligned}
& \left.\left\lvert\, \begin{array}{lll}
1 & 2 & 1 \\
3 & 1 & 4 \\
5 & 6 & 7
\end{array}\right.\right)^{2}=\left[\begin{array}{cc}
a^{a} & (b) \\
c & d
\end{array}\right],\left|\begin{array}{ll}
a+k b & b \\
c+k & d
\end{array}\right| \\
& a d-b c=a d+4\langle b d-b c-k<b d \\
& =a d-h c
\end{aligned}
$$

6. If each element of a row (or column) of a determinant consists of the algebraic sum of n terms, the determinant can be expressed as the sum of n determinants.

$$
\begin{aligned}
& \text { Same Ans }
\end{aligned}
$$

Application of determinant: To find the area of the triangle

Ex. Using determinants, find the area of the triangle with vertices $(-3,5),(3,-6)$ and $(7,2)$.

$$
\frac{1}{2}\left|\begin{array}{ccc}
-3 & 5 & 1 \\
3 & -6 & 1 \\
7 & 2 & 1
\end{array}\right|=
$$

Ex. Using determinants, show that the points $(11,7)$, $(5,5)$ and $(-1,3)$ are collinear

$$
\begin{aligned}
& \text { zero, then the matrix is known as singular matrix }|A|=0 \\
& \text { - AisSinglm } \\
& |A| \text { to nonsin }
\end{aligned}
$$

RANK OF A MATRIX $\checkmark|\operatorname{Min}| \neq 0$
The rank of a matrix is said to be r if
(a) It has at least one non-zero minor of order r.
(b) Every minor of A of order higher than r is zero.
$2 \Delta 2$
Find the rank of the matrix $\left(\begin{array}{ll}1 & 5 \\ 3 & 9\end{array}\right)$

$$
\left|\begin{array}{ll}
1 & 5 \\
3 & 9
\end{array}\right|=9-15=-6 \quad r=2
$$

Find the rank of the matrix $\left(\begin{array}{cc}-5 & -7 \\ 5 & 7\end{array}\right)$

$$
\left.\begin{array}{cc}
-5 & 2 \times 2 \\
5 & 7 \\
5 & 2 \times-35+35=0
\end{array} \quad \right\rvert\, \begin{array}{ll}
1 \times 1
\end{array}
$$

Find the rank of the matrix $\left(\begin{array}{ccc}0 & -1 & 5 \\ 2 & 4 & -6 \\ 1 & 1 & 5\end{array}\right) \quad \begin{array}{ll}3 \times 3 & r=1 \\ 0()_{0}+1 \\ \gamma=3\end{array}$

Find the Rank of using echelon form
-(1) Ri \longleftrightarrow Ri

Matrix A
Elementary Transformation

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 5 & 7
\end{array}\right)\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right] \\
& \sim\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -2 \\
0 & -1 & -2
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -2
\end{array}\right)-2
\end{aligned}
$$

LemkK-2
$R_{2} \rightarrow R_{2}-2 R_{1}$
$R_{3} \rightarrow R_{3}-3 R_{1}$
$\mathbf{R}_{3} \rightarrow R_{3}-R_{2}$

$$
\begin{aligned}
\mathbf{R}_{2} \rightarrow \mathbf{R}_{2}-2 \mathbf{R}_{1} \\
\mathbf{R}_{3} \rightarrow \mathbf{R}_{3}-3 \mathbf{R}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 2 & 3 \\
\frac{1}{2} & 3 & 4 \\
3 & 5 & 7
\end{array}\right) \\
& \begin{array}{ccc}
k_{2} 22 i \\
2 \rightarrow-32
\end{array}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -2 \\
0 & -1 & -2
\end{array}\right] \\
& R_{2}-22_{1}^{\prime} \\
& 4-2(3) \\
& n-6=-2 \\
& \text { 3-3 } \\
& \begin{array}{l}
7-3(2) \\
7-3
\end{array}
\end{aligned}
$$

- (-1) -2

Note: (i) Non-zero row is that row in which all the elements are not zero.-
(ii) The rank of the product matrix $A B$ of two are the ne matrices A and B is less than the rank of either of the matrices A and B.

如 \rightarrow "M 0

$$
\left[\begin{array}{cccc}
1 & -1 & -2 & -4 \\
0 & 5 & 3 & 7 \\
0 & 0 & \frac{35}{5} &
\end{array}\right]
$$

$$
\begin{aligned}
& k_{3}-k_{3}-\frac{1}{5} k_{2} \\
& 9-\frac{4}{5}(3) \\
& \frac{45-12}{5}=\frac{33}{5} \\
& 10-\frac{4}{5} 7 \\
& \frac{50-26}{5}=
\end{aligned}
$$

Linearly dependence and independence of vectors:

$$
\begin{aligned}
& x_{1}=\left[a_{11} a_{12} a_{13}\right)^{-} \\
& {\left[\begin{array}{c}
a 11 \\
a, 2 \\
a, 3
\end{array}\right]} \\
& \frac{\text { row modnx }}{\text { Col mar }} \frac{1 x m}{m x y} \text { roman vein }
\end{aligned}
$$

Vectors (matrices) $X_{1}, X_{2}, \ldots X_{\underline{n}}$ are said to be dependent if
(1) all the vectors (row or column matrices) are of the same order.

$$
\begin{aligned}
& \text { itrices) are of the } \\
& \propto[1,2,3](1,2)
\end{aligned}
$$

(2) n scalars $C_{1}, C_{2}, \ldots C_{n}$ (not all zero) exist such that

$$
\frac{x_{1} x_{2}-x_{n}}{\frac{x_{1}+x_{2}}{x_{1} x_{2}}+3}
$$

$$
\begin{aligned}
& \frac{C_{1}}{X_{1}}+\underline{C_{2}} X_{2}+\cdots+C_{n} X_{n}=0 \\
& C_{i}=C_{2}=C_{3}=\ldots=C_{n}=0
\end{aligned}
$$

but if at least one $c_{i} \neq 0$ \qquad

Otherwise they are linearly independent.
Find whether or not the following set of vectors are linearly dependent or independent:

$$
\begin{align*}
& \text { (i) }(1,-2),(2,1) \\
& \left(-x_{1}\right. \tag{1}\\
& (1) \times 2+-2)
\end{align*}\left[\begin{array}{l}
\frac{x_{1} x_{1}+c_{2} x_{2}=0}{c_{1}(1,-2)+c_{2}(2,1)=0} \\
c_{1}+2 c_{2}=0 \\
-2 c_{1}+c_{2}=0 \\
\cdots
\end{array}\right]
$$

$$
\begin{aligned}
& (1) \times 2-2 c_{1}+c_{2}=0-(-2) \\
& -(1) \times 2+(-2) \\
& 2 c 1+4 c_{2}=0 \quad C_{1}=0 \\
& -\angle 2 c_{1}+c_{2}=0 \\
& S C_{2}=0 \Rightarrow C_{1}=0 \\
& \text { (ii) }(1,-2),(2,1),(3,2) \quad c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}=0 \\
& \begin{array}{llll}
c_{1} & x_{2} & x_{3} & c_{1}(1,-2)+c_{2}(2,1)+c_{3}(3,2)=0
\end{array} \\
& \frac{\left(\mathrm{C}_{1}, C_{2}, C_{3}\right)}{\rightarrow\left(-2 \times_{2}+(-2)\right.} \\
& \begin{array}{l}
c_{3}=-\quad \begin{array}{l}
2 c_{1}+2 c_{2}+6 c_{3}=0 \\
\\
-2 c_{1}+c_{2}+2 c_{3}=0
\end{array}
\end{array} \\
& { }^{(-\infty, \infty)} \\
& c_{2}=\frac{5 c_{2}+8 c_{3} c_{2}}{c_{2}=-\frac{8}{5} c_{3}} \\
& \begin{array}{ll}
C_{3}=1 & -\frac{8}{5} \\
C_{2}=-\frac{8}{5} & C_{2}=\frac{8}{5} \\
C_{1}= & C_{2}=2 \\
C_{2}=\frac{10}{5} \\
C_{1}=
\end{array} \\
& C_{2}=-\frac{8}{5} C_{3} \\
& C_{3}=0 \quad C_{2}=0 \quad C_{1}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iii) }\left(1,1, \frac{1}{x}, 1\right),(0,1,1,1),(0,0,1,1),(0,0,0,1) \text {. } \\
& \text { Sean } \\
& C_{1} X_{1}+C_{2} X_{2}+C_{3} X_{3}+C_{4} X_{4}=0 \\
& G_{1}=0 \quad \\
& c_{1}+c_{2}=0 \quad c_{2}=0 \quad L \cdot D . \\
& c_{1}+c_{2}+c_{2}=0 \quad c_{3}=0 \\
& c_{1}+C_{2}+c_{3}+c_{4}=0 \quad c_{4}=\text {. }
\end{aligned}
$$ VECTORS BY DETERMINANT:

If the determinant of the these $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ is zero then they are dependent otherwise independent.

$$
\begin{array}{ll}
\text { Ex. (i) }(1,-2),(2,1) \quad|A|=0 \quad L \cdot D \\
\left|\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right|=1+4=5 \neq 0 \quad|A| \neq 0 \quad L \cdot I \quad\left|\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right|
\end{array}
$$

$$
\begin{aligned}
& \left(3^{2}, 3,2\right)=(1,2,1)+(2,1,1) \\
& y=5(0) \\
& \text { (ii) }(1,2,1),(2,1,1)(3,3,2) \\
& \left|\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1 \\
3 & 3 & 2
\end{array}\right| \square \\
& =1(2-3)-2(4-3)+1(6-3) \\
& =-1-2(1)+3=0 \text { LtD. } \\
& |A|=\left|\lambda^{\top}\right|^{\text {(iii) }(3,0,1)^{\top}(1,2,1)(2,-2,0)^{\top}}\left|\begin{array}{ccc}
3^{\top} & 1 & 2 \\
0 & 2 & -2 \\
1 & 1 & 0
\end{array}\right| \\
& 3(0+2)-1(+2)+2(-2) \\
& (-2-4=0 \mathrm{~L} \cdot \mathrm{D}
\end{aligned}
$$

$$
\left.\rightarrow \Psi_{\substack{\text { (iv) } \\ 1 \\ 1 \\ 0 \\ 0 \\ 1}} 1,1,1,1,1\right),(0,1,1,1),(0,0,1,1),(0,0,0,1) .
$$

$$
=1.1 .1=1 \neq 0 L . I
$$

$$
\begin{aligned}
& |A|=0 L \cdot D \\
& |A| \neq 0 L \cdot I
\end{aligned}
$$

LINEARLY DEPENDENCE AND INDEPENDENCE OF VECTORS BY RANK METHOD:

$$
x_{1} x_{2} x_{3}
$$

1. If the rank of the matrix of the given vectors is 3_{2} equal_to number of vectors, then the vectors are linearly independent.

$$
\text { Rank } A=N_{0} \text { of velars given }
$$

2. If the rank of the matrix of the given vectors is less than the number of vectors, then the vectors are linearly dependent.

$$
\begin{aligned}
& \text { Ex. The following vectors are linearly independent or } \\
& \text { not } A=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array} x_{3}\right] \\
& X_{1}=(2,2,1)^{2}, X_{2}=(1,3,1)^{2}, X_{3}=(1,2,2)^{2}-\underline{A}=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 3 & 2 \\
1 & 1 & 2
\end{array}\right] \\
& |A|=2(6-2)-1(4-2)+1(2-3) \\
& \text { Rank }=\text { Rif: }=8-2-1=5 \neq 0 \text { Rank }=3
\end{aligned}
$$

Ex. Show using a matrix that the set of vectors $x=[1,2,-3,4], y=[3,-1,2,1], z=[1,-5,8,-7]$ is linearly dependent.

$$
\pi=\lfloor 1,4,-3,4\rfloor, y=[5,-1, C, 1], \leftrightarrows[1,-0,0,-1\rfloor \text { is }
$$

linearly dependent.

a) $C X$
(b) 5^{x}
(c) $4 x$

$$
-3+3 \operatorname{Rank}(A) \leq \min (3,4)
$$

(d) 25

$$
\text { L.L.L-O v<d }\left[(x, y, 2)\left(2 n, 3 y_{2}\right)\right]
$$

v

$$
\left\lvert\,\left[\begin{array}{cccc}
f_{1} & f_{2} & f_{3} \\
f_{3}^{\prime} & f_{1}^{\prime} & f_{3}^{\prime} \\
f_{0} & f_{1}^{\prime \prime} & f_{3}^{\prime \prime}
\end{array}\right]=0\right.
$$

$$
1 \quad\left(\begin{array}{l}
C_{1} X_{1}+C_{2} X_{2}+-+C_{n} X_{n}=0 \\
C_{1}=0 \forall i \quad L \cdot L \\
\text { at lantone } C_{i} \neq 0 \text { L.D }
\end{array}\right.
$$

ADJOINT OF A SQUARE MATRIX

Let the determinant of the square matrix A be $|A|$.

The matrix formed by the co-factors of the elements in

$$
\begin{array}{rlrl}
|A| \text { is }\left[\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right] . & a_{12}=(-1) M \\
\text { where } A_{1}=\left|\begin{array}{ll}
A_{1} & \frac{b_{3}}{c_{2}}
\end{array}\right|=b_{2} c_{3}-b_{3} c_{2}, & A_{2}=-\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|=-b_{1} c_{3}+b_{3} c_{1} \sim \\
A_{3}=\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| & =b_{1} c_{2}-b_{2} c_{1}, & B_{1}=-\left|\begin{array}{ll}
a_{2} & a_{3} \\
c_{2} & c_{3}
\end{array}\right|=-a_{2} c_{3}+a_{3} c_{2} \\
B_{2}=\left|\begin{array}{ll}
a_{1} & a_{3} \\
c_{1} & c_{3}
\end{array}\right| & =a_{1} c_{3}-a_{3} c_{1}, & B_{3}=-\left|\begin{array}{ll}
a_{1} & a_{2} \\
c_{1} & c_{2}
\end{array}\right|=-a_{1} c_{2}+a_{2} c_{1} \\
C_{1}=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|=a_{2} b_{3}-a_{3} b_{2}, & C_{2}=-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|=-a_{1} b_{3}+a_{3} b_{1} \\
C_{3}=\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}
\end{array}
$$

Then the transpose of the matrix of co-factors

$$
\left[\begin{array}{lll}
A_{1} & B_{1} & C_{1} \\
A_{2} & B_{2} & C_{2} \\
A_{3} & B_{3} & C_{3}
\end{array}\right] \quad \begin{aligned}
& \text { is called the adjoint of the } \\
& \text { matrix } A \text { and is written as } \operatorname{adj} A .
\end{aligned}
$$

$$
\begin{array}{rl}
A & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array} v^{v}\right. \\
\text { adj } A & A=\left[\begin{array}{ccc}
4 & -5 & 1 \\
2 & 0 & -2 \\
2 & 5 & 3
\end{array}\right]^{\top}=\left[\begin{array}{ccc}
4 & 2 & 2 \\
1 & 1 & -6 \\
-5 & 0 & 5 \\
1 & -2 & 3
\end{array}\right] \\
\text { why } A=\left[\begin{array}{cc}
4 & -3 \\
-2 & 1
\end{array}\right] \\
\left.\quad\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right]\right|^{\top}
\end{array}
$$

PROPERTY OF ADJOINT MATRIX

$$
\begin{array}{ll}
& \text { PROPERTY OF ADJOINT MATRIX } \\
\text { A. ad } A_{1} & \text { adj } A)^{\top}=\frac{1}{|A|} \cdot A \\
L(1) \operatorname{A} \cdot \operatorname{adj}(A))=\operatorname{adj}(A) \cdot A=|A| \cdot I_{n_{-}} \text {where, } A \text { is } \\
\text { a square matrix, } I \text { is an identity matrix of same }
\end{array}
$$ a square matrix, I is an identity matrix of same order.

(2) if A is invertible square matrix

$$
|\operatorname{adj}(A)|=|A|^{n}-1
$$

$$
|\operatorname{adj}(A)|=|A|^{n-1}
$$

(3) if A is invertible square matrix

IAIFO A^{+}emits

$$
\operatorname{adj}(\operatorname{adj}(A))=|A|^{n-2} \cdot A
$$

$$
\alpha={ }^{1}|P|-
$$

if $P=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is adjoint of 3×3 matrix with $|A|=4$ then the value of α is
b. 11
c. 13

d. $1 / 3$

$$
\begin{array}{r}
1(12-12)-\alpha(-2)+3(-2)=4^{2} \\
0+2 \alpha-6=16 \\
2 \alpha=22 \\
\alpha=11
\end{array}
$$

\qquad

INVERSE OF A MATRIX

$$
{\underset{\sim}{A}}_{A}^{1}=3=A=I
$$

If A and B are two square matrices of the same order, such that $A B=B A=I \quad$ ($\overline{I=\text { unit matrix) }}$ then B is called the inverse of A i.e. $B=A^{-1}$ and A is the inverse of B.

To find the inverse of the Matrix A we use

$$
A \backslash S=B A^{A-3} \geq \frac{1}{|A|}(\overline{\operatorname{Adj}(A)),} \quad \text { if }|A| \neq 0
$$

Properties of inverse of the matrix

$$
\begin{aligned}
& A B=B \cdot A=\Sigma \\
& A B^{\prime}=I^{\prime} \cdot A=\frac{I}{1}
\end{aligned}
$$

1. Inverse of the matrix is unique
2. Inverse of the matrix is unique
3. $(A B)^{-1}=B^{-1} A^{-1} \quad A I^{\prime}=D^{\prime} A=I$
4. If A is an invertible square matrix; Then $(A)^{T}$ is also invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} \quad|A|=\left|A^{T}\right|$
5. The inverse of an invertible symmetric matrix is a symmetric matrix.

6. $\left|A^{-1}\right|=|A|^{-1}$ i.e. $\quad\left|A^{-1}\right|=\frac{1}{|A|}$

$$
\begin{array}{ll}
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] \quad|A|=6 & \left|A^{+1}\right|=|A|^{-1} \\
\left.A^{-1}=\frac{1}{6}\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right]^{\top}=\frac{1}{6}\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & \frac{1}{3}
\end{array}\right] \quad\left|A^{-1}\right|=\frac{1}{6}\right)^{(6)^{-1}=\frac{1}{6}} \\
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \quad|A|=8 \\
|A|^{-1}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]=\frac{1}{8} \quad|A|^{-1}
\end{array}
$$

Solution of $n \times n$ linear system of equation

Consider the system of n equations in n unknowns

$$
\begin{aligned}
& 2 n+3 y=5 \\
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& 3 x+2 y=5 \\
& 4 x+7 y=8 \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \text {... } \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n} \\
& \text {-1) } \\
& 2
\end{aligned}
$$

In matrix form we can write this system as $A x=b$

$$
\checkmark\left[\begin{array}{llll}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n}
\end{array}\right] \quad \mathbf{h}=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Note:

1. A is the coefficient matrix, b the right hand side, and \underline{x} is the solution vector.
2. If b not equal to zero system is called nonhomogeneous.
3. If b is zero its call homogeneous.'

$$
A x=b \neq 0
$$

$$
b=0
$$

4. The system of equations is called consistent if it has at least one solution.
otherwise the system is inconsistent.

Homogeneous system of equations:
Consider the homogeneous system of equations $A x$ $A x=0<-\frac{1}{\infty}$ (Trivial) solution $x=0$ is always a solution of this system.

If A is non singular, then $x=A^{-1} 0=0$ is the solution. 3nthy-。

Thus $A x=0$ is the always consistent.
We conclude that non-trivial solution for $A x=0$ exist if and only if A is singular, in this case this system has infinite solutions.

$$
\begin{aligned}
& \begin{array}{ll}
A x=0 & \text { if } \frac{|A| \neq 0}{A^{-1}}
\end{array} \\
& x=0 \text { zug } \\
& A x=\frac{0}{2}<\frac{10}{} \quad|A| \neq 0 \quad|A|=0 \quad \text { non zero sal }
\end{aligned}
$$

$$
\begin{aligned}
& z e n 0_{0} \\
& h_{0} z 00
\end{aligned}|A|=10 \neq 0 \quad x, y, z=
$$

Ex. Solve the system of the equation using

$$
\underline{x}-\underline{y}+\underline{z}=0, \quad 2 x+y-3 z=0, \quad x+y+z=0 \quad x=y=2
$$

$$
\begin{array}{r}
{\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
\left.X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \right\rvert\, A x=0
\end{array}
$$

$x-y+z=0$
$0-0+0=0$ L.H.S = RHAS

Ex. If the system of the equations $x-k y-z=0, k x-y-$ $z=\overline{0, x}+y-z=0$ has nonzero solution then values of K are
a. $-1,2$
b. 0,1
c. 1,1
d. $-1,1$
$|A|=0$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & -k & -1 \\
k & -1 & -1 \\
1 & 1 & -1
\end{array}\right|=0 \\
& (1+1)+k(-k+1)-1(k+1)\left|\begin{array}{l}
k^{2}=1 \\
2-k^{2}+x-k-1 \\
-k^{2}+1=0
\end{array}\right| \begin{array}{l}
k=1
\end{array}
\end{aligned}
$$

Ex. If the system of the equations $\mathrm{k} x+y+z=0,-x+$ $k y+z=0,-x-y+k z=0$ has non-zero solution then value of K is
La. 0
b. 1
c. -1
d. 2

$$
\begin{aligned}
& \begin{array}{ccc}
k & 1 & 1 \\
-1 & k & 1 \\
-1 & -1 & k \\
k\left(k^{2}+1\right)-1(-k+1)+1(1+k)=0 \\
k\left(k^{2}+1\right)+k-k+1+k+k \\
k\left(k^{2}+1+2\right)=0
\end{array} \quad \begin{array}{l}
k=0 \\
k= \pm \sqrt{3} i
\end{array}
\end{aligned}
$$

Solution of Non-homogeneous system of equations
The non-homogeneous system of equations $A x=\frac{A n=b}{b \text { can be }}$ solved by the following methods
(i) Matrix method
(ii) Kramer's Rule
(i) Matrix method:

Let A be non-singular, then pre-multiplying $A x=b$ by A^{-1}, we obtain

$$
\begin{array}{ll}
x=A^{-1} b \\
A^{\top} X & =b \\
A^{-1} A X & =A^{-1} b \\
J X & =A^{-1 b}
\end{array} \quad X=A A^{-1} b
$$

Ex. Solve the system of the equation using matrix method $x-y+z=\underline{4}, \quad 2 x+y-3 z=\underline{0}, \quad x+y+z=2$

$$
\begin{aligned}
& \text { DA }=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1
\end{array}\right] \quad X=\left[\begin{array}{l}
x \\
0 \\
2
\end{array}\right] \quad b=\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right] \\
& |A|=1(1+3)+1(2+3)+1(T)=4+5+1=10 \\
& \operatorname{adj} A=\left[\begin{array}{ccc}
4 & -5 & 1 \\
2 & 0 & -2 \\
2 & 5 & 3
\end{array}\right]^{\top}=\left[\begin{array}{ccc}
4 & 2 & 2 \\
-5 & 0 & 5 \\
1 & -2 & 3
\end{array}\right] \quad A^{-1}=\frac{1}{10} \text { ald } A \\
& X=A \cdot b=\frac{1}{10}\left[\begin{array}{ccc}
4 & 2 & 2 \\
-5 & 0 & 5 \\
1 & -2 & 3
\end{array}\right]\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right]=\frac{1}{10}\left[\begin{array}{c}
20 \\
-10 \\
10
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
2
\end{array}\right]
\end{aligned}
$$

Ex. Solve the system of the equation using matrix method $-x+y+2 z=2, \quad 3 x-y+z=3, \quad-x+3 y+4 z=$ 6

Ex. Solve the system of the equation using matrix method

$$
\begin{aligned}
& 2 x-z=1,5 x+y=7, \quad y+3 z=5 \\
& A=\left[\begin{array}{ccc}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right] \quad x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
7 \\
5
\end{array}\right] \\
& |A|=1 \\
& \operatorname{adj} A=\left[\begin{array}{ccc}
3 & -15 & 5 \\
-1 & 6 & -2
\end{array}\right]^{\top}=\left[\begin{array}{ccc}
3 & -1 & 1 \\
-15 & 6 & -5 \\
- & -7 & 2
\end{array}\right] \quad 3-7+5
\end{aligned}
$$

(ii) Kramer's Rule:

Let A be a non-singular matrix then by Cramer's rule solution of $A x=b$ is given by

$$
x_{i} \quad x_{i}^{n_{i}}=\frac{\| A_{i j} \gamma^{\prime}}{|\eta|^{2}} \quad i=1,2,3, \ldots, n
$$

$$
x_{1}=x
$$

$x_{2}=y$ Where $\left|A_{i}\right|$ is the determinant of the matrix $\left|A_{i}\right|$ obtained by $\mu_{2}=2$ replacing the th column of A by the right hand side column vector b.

$$
n_{1}=x=\frac{\left|A_{1}\right|}{|A|} x_{22} y=\frac{\left|A_{2}\right|}{|A|} \quad z=\frac{\left|A_{3}\right|}{|A|} \quad t=\frac{\left|A_{4}\right|}{|A|}
$$

$|\lambda|$

Ex. Solve the system of the equation using

$$
x-y+z=\underline{4}, \quad 2 x+y-3 z=\underline{0}, \quad x+y+z=\underline{2}
$$

Note: We have the following cases in this method 1. 0 Case 1: when $|A| \neq 0$. the svstem is consistent and the uniaue

$$
\begin{aligned}
& \operatorname{adj} A=\left[\begin{array}{rrr}
3 & -15 & 5 \\
-1 & 6 & -2 \\
1 & -5 & 2
\end{array}\right]^{\prime}=\left[\begin{array}{ccc}
5 & 1 & 1 \\
-19 & 6 & -5 \\
5 & -2 & 2
\end{array}\right] \quad 3-7+5 \\
& X=A^{-1} \cdot b=\left[\begin{array}{ccc}
3 & -1 & 1 \\
-15 & 6 & 5 \\
5 & -2 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
7 \\
5
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]= \\
& \hat{f} x=b \\
& x=A^{-1} b\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
\end{aligned}
$$

Note: We have the following cases in this method Case 1: when $|A| \neq 0$, the system is consistent and the unique solution is obtained by using the above method.

$$
\| A_{1} \backslash \backslash A_{2}-
$$

Case 2: When $|A|=0$, and one or more of $\left|A_{i}\right|, i=1,2,3, \ldots, n$ are not zero then the system of the equations has no solution that is the system is inconsistent.
no sal
Case 3: When $|A|=0$, and all $\left|A_{i}\right|=0, i=1,2,3, \ldots, n$, then the system of equations is consistent and has infinite number of solutions. The system of equations has at least a one-parameter family of solutions.

Ex. Solve the system of the equation using

$$
\begin{aligned}
& \underline{4} x+\underline{9} y+3 z=\underline{6}, 2 x+3 y+z=2,2 x+6 y+2 z=\underline{7} \\
& \underset{\sim}{\sim} \mid \\
& =|A|=\left[\begin{array}{lll}
4 & 9 & 3 \\
2 & 3 & 1 \\
2 & 6 & 2
\end{array}\right] \quad b=\left[\begin{array}{c}
6 \\
2 \\
7
\end{array}\right] \\
& 0=\left|A_{1}\right|=\left[\begin{array}{lll}
6 & 9 & 3 \\
2 & 3 & 1 \\
7 & 6 & 2
\end{array}\right] \\
& \left|A_{3}\right|=\left[\begin{array}{lll}
4 & 9 & 6 \\
2 & 3 & 2 \\
2 & 6 & 7
\end{array}\right]
\end{aligned}
$$

Ex. Solve the system of the equation using

$$
\begin{gather*}
x-y+3 z=3, \quad 2 x+3 y+z=2, \quad 3 x+2 y+4 z=5 \\
|A|=\left|\begin{array}{ccc}
1 & -1 & 3 \\
2 & 3 & 1 \\
3 & 2 & 4
\end{array}\right|=0 \quad\left|A_{1}\right|=\left|\begin{array}{ccc}
3 & -1 & 3 \\
2 & 3 & 1 \\
5 & 2 & 4
\end{array}\right|=0 \\
\left|A_{2}\right|=\left|\begin{array}{lll}
1 & 3 & 3 \\
2 & 2 & 1 \\
3 & 5 & 4
\end{array}\right|=0 \quad\left|A_{3}\right|=\left|\begin{array}{ccc}
1 & -1 & 3 \\
2 & 3 & 2 \\
3 & 2 & 5
\end{array}\right|=0 \\
\left(\begin{array}{cc}
x-y+32=3 & -1 \\
2 x+3 y+2=2 & -2) \\
3 x+2 y+4 z=5-3
\end{array}\right. \\
\begin{array}{c}
5 y-5 z=-4 \\
-(1) \times z
\end{array}
\end{gather*}
$$

$5 n-5 z=-4$

$$
\begin{array}{rlr}
5 y-5 z=-4 & y=\frac{-4}{5}+z \\
5 y-5 z=-4 & y<-3 \\
z & =t \quad y=\frac{-4}{5}+t \quad x=f(t)
\end{array}
$$

a) 1
b) $N o$
c) α

Ex. The system of linear equations $x+y+z=2,2 x+$

$$
3 y+2 z=5,2 x+3 y+\left(a^{2}-1\right) z=a+1
$$

a. Is inconsistent for $a=4$
b. Has unique solution for $a=\sqrt{3}$
c. Has infinite solution for $a=4$

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 2 \\
2 & 3 & a^{2}-1
\end{array}\right|
$$

d. Inconsistent for $a=\sqrt{3}{ }^{2}$

$$
a^{2}-3=0
$$

$$
1\left(3\left(a^{2}-1\right)-6\right)-1\left(2\left(a^{2}-1\right)-4\right)+(0)
$$

$$
\begin{aligned}
& a^{2}-3=0 \\
& 16-3=13 \neq 0
\end{aligned}
$$

Ex.
If the system of linear equation $x-4 y+7 z=g, 3 y-5 z=h,-2 x+5 y-9 z=$ ki consistent, then:

$$
\begin{gathered}
\text { w }|A|=0 \\
-\infty|A|=\cdot
\end{gathered}
$$

A $\quad \mathrm{g}+\mathrm{h}+\mathrm{k}=0$
B- $2 \mathrm{~g}+\mathrm{h}+\mathrm{k}=0$

$$
\left.A=\left\lvert\, \begin{array}{ccc}
1 & -4 & 7 \\
0 & 3 & -5 \\
-2 & 5 & -9
\end{array}\right.\right)
$$

C $\quad \mathrm{g}+\mathrm{h}+2 \mathrm{k}=0$

$$
=1(-27+25)-0()-2(20-21)
$$

D $\quad \mathrm{g}+2 \mathrm{~h}+2 \mathrm{k}=0$

$$
=-2+2=0
$$

$6 y+3 h+3 x=0 \quad A_{1} \quad A_{2} \quad A_{3}$

$$
A_{3}=\left|\begin{array}{c}
1 \\
0 \\
-2
\end{array} \frac{-45}{3} 54\right|=0
$$

gk th $k=2$

$$
1(3 k-5 h)-2(-4 h-3 g)=0
$$

\qquad
so $\quad|A| \neq 0^{-1} \quad 3 k+3 h+69=0$

$$
\begin{aligned}
& \text { A| } \neq 0-1 \text { No lear }\left|\overline{A_{j}}\right| \neq \\
& |A|=0 \leq \infty \text { abe }\left|A_{1}\right|=
\end{aligned}
$$

(iii)Gauss elimination Method for Non-homogeneous System Let we have the non-homogeneous system $A \times=b$
where

$$
\begin{aligned}
& \quad \operatorname{Nofer}^{2}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right], \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] . \\
& \gamma=\operatorname{Ronk}
\end{aligned}
$$

Now we write the augmented matrix of order $m \times(n+1)$

Now we can reduce this matrix in to row echelon form using elementary operations

$(A \mid h)=$
-Ex. Solve following system using gauss elimination
(i) $\left[\begin{array}{rrr}2 & 1 & -1 \\ 1 & -1 & 2 \\ -1 & 2 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}4 \\ -2 \\ 2\end{array}\right]$,
$2 x+y-2=4$
$x-y+2 z=-2$$\quad\left(\left[\begin{array}{rrr|r}2 & 1 & -1 & 4 \\ 1 & -1 & 2 & -2 \\ -1 & 2 & -1 & 2\end{array}\right)\right.$

$$
\begin{aligned}
& \begin{array}{cc}
-y & 1 \\
x-y+22 & =-2 \\
-x+2 y-z & =2
\end{array} \quad\left(\begin{array}{ll}
-1 & 2
\end{array}\right) \\
& -x+2 y-2=2 \\
& \begin{array}{cccc}
2 & 1 & -1 & 4 \\
-1 & 2 & -1 & 2 \\
2 & -1 & 2 & -2
\end{array} \quad \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
1 \\
0 \\
0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x-y+22=-2 \\
& z=-1 \quad x-1-2=-2 \\
& >3 y-52=8 \\
& 3 y+5=8 \quad K=1 \\
& \frac{8}{3} 2=\frac{-8}{3} \\
& L y=T
\end{aligned}
$$

Note:

1. Let $r<\underline{m}$ and one or more elements $b_{\underline{r+1}}^{*}, b_{\underline{r+2}}^{*}, \ldots, b_{m}^{*}$ are not zero. Then $\operatorname{rank} \overline{(A)} \neq-\operatorname{rank} \overline{(A \overline{\mid}} b \overline{)}$ and the system of equation has no solution.
2. Let $m \geq n$ and $r=n$ (the number of columns in A) and $b_{i}^{*}{ }_{+1}, b_{+2}^{*}, \ldots, b_{2}^{*}$ are all zero. In this case $\operatorname{rank}(A)=\operatorname{rank}(A \mid b)=n$ and the system of equations has unique solution.
3. Let $r<\underline{n}$ and $b_{r+1}^{*}, b_{r+2}^{*}, \ldots, b_{m}^{*}$ are all zero. In this case $x_{1}, x_{n}, x_{\text {.. }}$ ran he dotormined in term of remaining $(n-r)$
$x_{1}, x_{2}, \ldots, x_{r}$ can be determined in term of remaining ($n-r$) unknowns $x_{r+1}, x_{r+2}, \ldots, x_{n}$.
(ii) $\left[\begin{array}{rrr}2 & 0 & 1 \\ 1 & -1 & 1 \\ 4 & -2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ 1 \\ 3\end{array}\right]$,

$$
\begin{aligned}
\angle A(b)= & {\left[\begin{array}{ccc|c}
2 & 0 & 1 & 3 \\
1 & -1 & 1 & 1 \\
4 & -2 & 3 & 3
\end{array}\right] } & & R_{2} \leftrightarrow R_{1} \\
& {\left[\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
2 & 0 & 1 & 3 \\
4 & -2 & 3 & 3
\end{array}\right] } & \begin{array}{ll}
R_{2} \rightarrow R_{2}-2 R_{1} \\
(A b)
\end{array} & \left.\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
0 & 2 & -1 & 1 \\
0 & 2 & -1 & -1
\end{array}\right]
\end{aligned} \begin{array}{lll}
1 & -1 & 1
\end{array} 1
$$

N. Sal

$$
\begin{aligned}
& \text { (iii) }\left[\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & -1 \\
5 & -2 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right] \text {. } \\
& \text { <Arb> }\left[\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
2 & 1 & -1 & 2 \\
-5 & -2 & 2 & 5
\end{array}\right] \begin{array}{l}
{\left[\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
0 & 3 & 3 & 0 \\
0 & 3 & -3 & 0
\end{array}\right.}
\end{array} \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-5 R_{1} \\
-2
\end{array} \\
& 2 k 3 \quad\left[\begin{array}{ccc|c}
0 & 3 & -3 & 0 \\
1 & -1 & 1 & 1 \\
0 & 3 & -2 & 0 \\
0 & 0 & 0 & (0)
\end{array}\right] \\
& x-y+z=1 \\
& 3 y-3 z=0 \\
& 1 y=2
\end{aligned}
$$

$$
\begin{gathered}
y-3 z=0 \\
y=2 \\
x=1
\end{gathered}
$$

(iv) Gauss-Jordan method

Ex. Using gauss-Jordan method solve the system of equations $A x=b$, where

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1
\end{array}\right], \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
4 \\
1
\end{array}\right] . \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad-\left[\begin{array}{ccc|c}
1 & -1 & 1 & 0 \\
2 & 1 & -3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right] \quad \begin{array}{c}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array} \\
& {\left[\begin{array}{ccc|c}
1 & -\frac{1}{3} & 1 & 0 \\
0 & 3 & -5 & 4 \\
0 & +2 & 0 & 1
\end{array}\right] \quad R_{2} \rightarrow \frac{1}{3} R_{2}} \\
& \begin{array}{l}
1-\frac{5}{3} \\
0-2\left(\frac{5}{3}\right)
\end{array} \quad\left[\begin{array}{ccc|c}
1 & -1 & 1 & 0 \\
0 & 1 & -5 / 3 & 4 / 3 \\
0 & 2 & 0 & 1
\end{array}\right] \\
& R_{1} \rightarrow R_{1}+R_{2} \\
& R_{3} \rightarrow R_{3}-2 R_{2} \\
& \underset{3}{1}+\frac{4}{3}\left[\begin{array}{ccc|c}
1 & 0 & -2 / 3 & 4 / 3 \\
0 & 1 & -5 / 3 & 4 / 3 \\
0 & 0 & \frac{10}{3} & \frac{-5}{3}
\end{array}\right] \\
& R_{3} \rightarrow \frac{R_{3}}{\frac{10}{3}} \\
& \begin{array}{l}
\frac{4}{3}+\frac{2}{3}\left(\frac{-1}{2}\right) \\
\frac{8-2}{6}
\end{array}\left[\begin{array}{ccc|c}
1 & 0 & -2 / 3 & 4 / 3 \\
0 & 1 & -5 / 3 & 4 / 3 \\
0 & 0 & 1 & -\frac{1}{2}
\end{array}\right] \\
& \frac{-5}{7} \frac{3}{10} \\
& R_{1} \rightarrow R_{1}+\frac{2}{3} R_{3} \\
& R_{2} \rightarrow R_{2}+\frac{5}{3} R_{3} \\
& {\left[\begin{array}{ccc}
\frac{1}{2} & 1 \\
\frac{1}{3} \frac{1}{2} & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
2
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 / 2 \\
-1 / 2
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x= \\
y \\
z=
\end{array}\right]} \\
& R_{2} \rightarrow ?_{2}-R_{1} \\
& R_{5}-2^{2} 5^{-33^{2}} \\
& {\left[\begin{array}{lll}
\text { [} \mid ~ b] ~
\end{array}\right.}
\end{aligned}
$$

$[\mathbf{A} \mid \mathbf{b}] \xrightarrow[\text { row operations }]{\text { Elementary }}\left[\begin{array}{l}\mathbf{I}+\mathbf{e}] \\ x, y, z= \\ \left.R_{3}-\gamma R_{3}-3\right)^{2}, \\ R_{2},\end{array}\right.$

$$
\left.\left.\begin{array}{c}
{\left[\begin{array}{ccc}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr|r}
1 & -1 & 1 & 0 \\
2 & 1 & -3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right] \begin{array}{lrr|r}
R_{2}-2 R_{1} \\
R_{3}-R_{1}
\end{array} \approx\left[\begin{array}{rrr}
1 & -1 & 1
\end{array}\right)} \\
0
\end{array} \begin{array}{rrr}
3 & -5 & 4 \\
0 & 2 & 0
\end{array} \right\rvert\, 1\right] R_{2} / 3
$$

$$
=\left[\begin{array}{rrr|r}
1 & 6 & 1 & 0 \\
0 & 1 & -5 / 3 & 4 / 3 \\
0 & 2 & 0 & 1
\end{array}\right] \begin{aligned}
& R_{1}+R_{2} \\
& R_{3}-2 R_{2}
\end{aligned}
$$

$$
\approx\left[\begin{array}{ccc|c}
1 & 0 & -2 / 3 & 4 / 3 \\
0 & 1 & -5 / 3 & 4 / 3 \\
0 & 0 & 10 / 3 & -5 / 3
\end{array}\right] \quad R_{3} /(10 / 3)
$$

$$
\approx\left[\begin{array}{rrr|r}
1 & 0 & -2 / 3 & 4 / 3 \\
0 & 1 & -5 / 3 & 4 / 3 \\
0 & 0 & 1 & -1 / 2
\end{array}\right] \begin{aligned}
& - \\
& R_{1}+2 R_{3} / 3 \\
& R_{2}+5 R_{3} / 3
\end{aligned}\left[\begin{array}{rrr|r}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 / 2 \\
0 & 0 & 1 & -1 / 2
\end{array}\right] .
$$

$$
\mathbf{x}=\left[\begin{array}{lll}
1 & 1 / 2 & -1 / 2
\end{array}\right]^{\top}
$$

Ex. Using Gauss-Jordan method find the inverse of the matrix

$$
\begin{aligned}
& \begin{array}{ll}
E 2 \\
-1 & 1
\end{array} \\
& \begin{array}{rrr}
3 & -1 & 1 \\
-1 & 3 & 4
\end{array} \\
& {[\mathbf{A} \mid \mathbf{I}] \underset{-2 \text { row operations }}{\text { Elementary }}\left[\mathbf{I} \mid \mathbf{A}^{-1}\right]} \\
& \begin{array}{l}
{\left[\begin{array}{ccc|ccc}
1 & -1 & -2^{\text {row operations }} \\
3 & -1 & 1 & 0 & 0 \\
-1 & 3 & 9 & 1 & 0 \\
1 & -1 & -2 & 1
\end{array}\right]} \\
{\left[\begin{array}{lllll}
1 & 2 & 7 & -1 & 0
\end{array}\right.} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lrr|rr}
L_{1} & -1 & -2 & 1 & 0 \\
0 & \frac{2}{2} & 7 & -1 & 0 \\
0 \\
0 & 2 & 2 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
R_{1} \rightarrow(-1) R_{1} \\
\left.R_{3} \rightarrow R_{2}-3\right\}_{1}
\end{array}} \\
& {\left[\begin{array}{llll}
-1 & 0 & 0 \\
3 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
R_{3} \rightarrow R_{3}+R_{1} \\
R_{2} \rightarrow \frac{1}{2} R_{2}
\end{array}} \\
& -1-3 \quad\left[\begin{array}{ccc|ccc}
1 & -1 & -2 & -1 & 0 & 0 \\
0 & 1 & 7 / 2 & 3 / 2 & 1 / 2 & 0 \\
0 & 2 & 2 & -1 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
R_{1} \rightarrow R_{1}+R_{2} \\
R_{3} \rightarrow R_{3}-2 R_{1}
\end{array} \\
& ?\left[\begin{array}{ccc|ccc}
1 & 0 & 3 / 2 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 & 7 / 2 & 3 / 2 & 1 / 2 & 0 \\
0 & 0 & -\frac{5}{2} & -4 & -1 & 0
\end{array}\right] \quad R_{3}-\frac{1}{5} R_{3} \\
& \frac{\left(0, i \frac{1}{(0)}\right)}{\lambda=8}\left[\begin{array}{lll|lll}
1 & 0 & 3 / 2 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 & 7 / 2 & 3 / 2 & 1 / 2 & 0 \\
0 & 0 & 1 & 4 / 5 & 1 / 9 &
\end{array}\right. \\
& \xrightarrow{|A| \neq O}\left[\begin{array}{cc}
10 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] A^{-1}=
\end{aligned}
$$

EIGENVALUES

$$
\begin{gather*}
\text { Let }\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\cdots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3}=\mathbb{Y}=\boldsymbol{X X}=\mathbf{Y} \\
\vdots \\
y_{n}
\end{array}\right]
\end{gather*}
$$

Where A is the matrix, X is the column vector and Y is also column vector.

Here column vector X is transformed into the column vector Y by means of the square matrix A.

Let X be a such vector which transforms into λX by means of the transformation (1). Suppose the linear transformation $Y=A X$ transforms X into a scalar multiple of itself ie. λX.

$\bar{A} X=\lambda I X \nmid \nmid x-0 \lambda$

$(A-\lambda I) x=0$
[]$=[(A-\lambda I) X X=\lambda Q=$
$A-\lambda I=0$
$\operatorname{det}(A+\bar{I})=0$
$A-\lambda I=0$ Ex. Find the eigenvalues and eigen vectors of the following ${ }^{\lambda}$? matrices
(i) $\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$

Note:

1. Characteristic Polynomial
2. Characteristic Equation
3. Characteristic Roots or Eigenvalues
(ii) $\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right]$
(iii) $\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$
(iv) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$
(v) $\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 2 & 0 \\ 2 & 3 & 5\end{array}\right]$
(vi) $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3\end{array}\right]$
(vii) $\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 8\end{array}\right]$

Note1: Direct Characteristic equation for matrix A
$\operatorname{Order} 2: \lambda^{2}-\operatorname{trac}(A) \lambda+\operatorname{det}(A)=0$
Order 3:

$$
\lambda^{3}-\operatorname{trac}(A) \lambda^{2}+\left(\operatorname{Minor}\left(a_{11}\right)+\operatorname{Minor}\left(a_{22}\right)+\operatorname{Minor}\left(a_{33}\right)\right) \lambda-\operatorname{det}(A)=0
$$

Note2: The eigenvalue of
(a) a symmetric/Hermitian matrix are real
(b) a skew-symmetric/skew-Hermitian matrix are zero or pure imaginary
(c)an orthogonal matrix are of magnitude 1 and are real or complex conjugate pairs
(d) an unitary matrix are of magnitude 1

Some Important Properties of Eigenvalues
(1) Any square matrix A and its transpose A^{\prime} have the same eigenvalues.
(2) The sum of the eigenvalues of a matrix is equal to the trace of the matrix.
(3) The product of the eigenvalues of a matrix A is equal to the determinant of A.
(4) If $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are the eigen values of A, then the eigen values of
(i) $k A$ are $k \lambda_{1}, k \lambda_{2}, \ldots, k \lambda_{n}$.
(ii) A^{m} are $\lambda_{1}^{m}, \lambda_{2}^{m}, \ldots, \lambda_{n}^{m}$.
(iii) A^{-1} are $\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \ldots, \frac{1}{\lambda_{n}}$.
(5) $(A-k I)^{-1}$ has the eigenvalue $\frac{1}{\lambda-k}$.
(6) (A-kI) has the eigenvalue $\lambda-k$.
(7) For a real matrix A, if $\alpha+i \beta$ is an eigenvalue, then
its conjugate $\alpha-i \beta$ is also an eigenvalue. When the

its conjugate $\alpha-i \beta$ is alsp an eigenvalue. When the Theorem:
Every square matrix ax satisf prosperty does not hold equation

Ex. Verify Cayley-Hamilton theorem for the following matrices. Also find the inverse of the matrix.
(i) $\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right]$
(ii) $\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$
(iii) $\left[\begin{array}{ccc}1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2\end{array}\right]$

CHARACTERISTIC VECTORS OR EIGEN VECTORS

A column vector X is transformed into column vector Y by means of a square matrix A.

Now we want to multiply the column vector X by a scalar quantity λ so that we can find the same transformed column vector Y. i.e., $A X=\lambda X$ X is known as eigenvector.

Show that the vector $(1,1,2)$ is an eigen vector of the matrix

$$
A=\left[\begin{array}{ccc}
3 & 1 & -1 \\
2 & 2 & -1 \\
2 & 2 & 0
\end{array}\right] \text { corresponding to the eigen value } 2 .
$$

Note: Corresponding to each characteristic root λ, we have a corresponding non-zero vector X which satisfies the equation $[A-\lambda I] X=0$. The nonzero vector X is called characteristic vector or Eigen vector.

Ex. Find the eigenvalues and eigenvectors of the following matrices
(i) $\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$
(ii) $\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right]$
(iii) $\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$
(iv) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$
(v) $\left[\begin{array}{ccc}1 & 3 & 3 \\ 1 & 4 & 3 \\ -1 & 3 & 4\end{array}\right]$
(vi) $\left[\begin{array}{lll}3 & 2 & 1 \\ 0 & 2 & 0 \\ 1 & 2 & 3\end{array}\right]$
(v) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
(vi) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(vii) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

PROPERTIES OF EIGEN VECTORS:

1. The eigen vector X of a matrix A is not unique.
2. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be distinct eigen values of an $n \times n$ matrix then corresponding eigen vectors $X_{1}, X_{2}, \ldots, X_{n}$ form a linearly independent set.
3. If two or more eigenvalues are equal it may or may not be possible to get linearly independent eigenvectors corresponding to the equal roots.
4. Two eigenvectors X_{1} and X_{2} are called orthogonal vectors if $X_{1}^{\prime} X_{2}=0$.
5. Eigen vectors of a symmetric matrix corresponding to different eigenvalues are orthogonal.
